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Abstract

In this paper, the problem of output-feedback stabilization is investigated for the first time for a class of stochastic nonlinear systems whose
zero dynamics may be unstable. Under the assumption that the inverse dynamics of the system is stochastic input-to-state stabilizable, a stabilizing
output-feedback controller is constructively designed by the integrator backstepping method together with a new reduced-order observer design
and the technique of changing supply functions. It is shown that, under small-gain type conditions for small signals, the resulting closed-loop
system is globally asymptotically stable in probability. The obtained results extend the existing methodology from deterministic systems to
stochastic systems. An example is given to demonstrate the main features and effectiveness of the proposed output-feedback control scheme.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Global output-feedback control for non-minimum-phase
nonlinear systems is a challenging problem in control theory.
It is known that stabilizable and detectable linear systems
are globally output-feedback stabilizable, but only some
classes of minimum-phase nonlinear systems are known to
be globally stabilizable by output feedback (see Battilotti,
1997; Huang, 2004; Krishnamurthy, Khorrami, & Jiang,
2002; Krstić, Kanellakopoulos, & Kokotović, 1995; Marino
& Tomei, 1991; Praly & Jiang, 1993; Praly, 2003, and the
references therein). Semiglobal output-feedback stabilization
can be achieved for nonlinear systems which are globally
state-feedback stabilizable and uniformly observable (Teel &
Praly, 1994). No such general results are so far available
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on the global output-feedback stabilization of non-minimum-
phase nonlinear systems. Nevertheless, some interesting results
have been proposed for some classes of non-minimum-phase
nonlinear systems; see, for instance, Andrieu and Praly (2005),
Isidori (2000), Karagiannis, Jiang, Ortega, and Astolfi (2005),
Marino and Tomei (2005).

Global stabilization for stochastic nonlinear systems has
been an active area of research in recent years (Arslan & Başar,
2002; Deng & Krstić, 1999, 2000; Deng, Krstić, & Williams,
2001; Florchinger, 1995; Krstić & Deng, 1998; Liu, Zhang, &
Jiang, 2007; Liu, Pan, & Shi, 2003; Liu, Zhang, & Pan, 2003;
Liu & Zhang, 2006; Pan & Başar, 1999; Pan, Liu, & Shi, 2001).
The design tool used in these recent works is based on the
famous integrator backstepping method, which has been widely
used to solve numerous control problems of both theoretic
and practical importance for deterministic nonlinear systems;
see Isidori (1999), Jiang (1999), Jiang and Praly (1998),
Kokotović and Arcak (2001), Krstić et al. (1995), Pan and Başar
(1998), and the numerous references therein. In Pan (2002), the
author examines three canonical forms of stochastic nonlinear
systems, namely the strict-feedback form, observer canonical
form and zero dynamics canonical form. The early work
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focused on stabilization and risk-sensitive control for systems in
the strict-feedback form (Arslan & Başar, 2002; Deng & Krstić,
1999, 2000; Deng et al., 2001; Liu, Pan, et al. 2003; Liu, Zhang,
et al. 2003; Pan & Başar, 1999). For systems in the observer
canonical form, which can be transformed into the ones
with linear zero dynamics by coordinate transformation, the
problems of output-feedback stabilization and practical output-
feedback risk-sensitive control are investigated in Pan et al.
(2001), and Liu and Zhang (2006), respectively. For systems
with stochastic nonlinear zero dynamics, in Liu et al. (2007) a
novel systematic procedure was given to design decentralized,
adaptive, output-feedback controllers achieving practical and
asymptotic stabilization. The design techniques rely upon the
concept of stochastic input-to-state stability and the method
of changing supply functions. However, these results are
limited to the systems without zero dynamics or with stable
zero dynamics. To the best of our knowledge, for stochastic
nonlinear systems with unstable zero dynamics, there is only
few published work. In Pan and Başar (1999), the problem of
full state-feedback risk-sensitive control was studied for a class
of nonlinear systems with strongly stabilizable zero dynamics.
But, when the states of the zero dynamics are not measurable,
even for this class of systems with strongly stabilizable zero
dynamics, it remains a difficult issue how to stabilize the
systems by output feedback.

Inspired by the recent papers Andrieu and Praly (2005),
Karagiannis, Ortega, and Astolfi (2003), and Karagiannis et al.
(2005) on the stabilizer design for deterministic non-minimum-
phase systems and our work Liu et al. (2007), in this paper,
we consider the output-feedback stabilization problem for
a class of stochastic nonlinear systems with unstable zero
dynamics. It is shown that under the assumption that the inverse
dynamics is stochastic input-to-state stabilizable, the systems
can be stabilized by an output-feedback controller which is
designed based on the integrator backstepping method and
the techniques of novel reduced-order observer design and
changing supply functions. The obtained results extend the
existing methodology from deterministic systems to stochastic
systems.

The remainder of the paper is organized as follows.
Section 2 provides some notations. Section 3 describes the
problem to be investigated. Section 4 presents the design of
reduced-order observer. The output-feedback control design
procedure is given in Section 5. Stability analysis of the
closed-loop system in question is given in Section 6. The
main conditions and the systems satisfying these conditions
are discussed in Section 7. Section 8 gives a numerical
example to illustrate the effectiveness of our methods. Section 9
contains some concluding remarks. Mathematical preliminaries
on the stability of stochastic nonlinear systems are given in
Appendix A.

2. Notation

The following notations will be used throughout this paper.
R+ denotes the set of all nonnegative real numbers; Rn denotes
the real n-dimensional space; Rn×r denotes the real n×r matrix

space. For a given vector or matrix X , XT denotes its transpose;
Tr(X) denotes its trace when X is square; |X | denotes the
Euclidean norm of a vector X ; ‖X‖ denotes the Frobenius
norm of the matrix X defined by ‖X‖ =

√
Tr(XT X); λmin(X)

denotes the minimal eigenvalue of symmetric real matrix X ;
Ci denotes the set of all functions with continuous i th partial
derivatives; K denotes the set of all functions: R+ → R+,
which are continuous, strictly increasing and vanish at zero;
K∞ denotes the set of all functions which are of class K
and unbounded; KL denotes the set of all functions β(s, t):
R+ × R+ → R+, which are of class K for each fixed t , and
decrease to zero as t → ∞ for each fixed s.

For a given stochastic system

dx = ( f (x)+ g(x)u)dt + h(x)dw,

define a differential operator L as follows:

LV =
∂V

∂x
f (x)+

∂V

∂x
g(x)u +

1
2

Tr
{

hT ∂
2V

∂x2 h

}
,

where V (x) ∈ C2; x ∈ Rn is the state, u ∈ R is the control
input; f ∈ Rn , g ∈ Rn and h ∈ Rn×r are C1 functions; w is an
r -dimensional standard Brownian motion.

3. Problem formulation

Consider the system described by the following Itô
stochastic differential equations

dxz = [F0(y)xz + H(y)+ f0(xz, y)]dt
+ g0(xz, y)dw, (1)

dx1 = (x2 + hT
1 (y)xz + f1(xz, y))dt + g1(xz, y)dw,

... (2)

dxn−1 = (xn + hT
n−1(y)xz + fn−1(xz, y))dt

+ gn−1(xz, y)dw,

dxn = (u + hT
n (y)xz + fn(xz, y))dt + gn(xz, y)dw,

y = x1 (3)

where x = [xT
z , x1, . . . , xn]

T, u ∈ R, y ∈ R represent the state,
the control input, the measured output, respectively; xz ∈ Rm

is referred to the state of the stochastic inverse dynamics; the
initial value x(0) = x0 is fixed; F0 ∈ Rm×m , H ∈ Rm

and hi ∈ Rm , i = 1, . . . , n, are known smooth functions;
f0 ∈ Rm , g0 ∈ Rm×r , fi ∈ R and gT

i ∈ Rr , i = 1, . . . , n,
are uncertain locally Lipschitz functions;w is an r -dimensional
standard Brownian motion defined on the complete probability
space (Ω ,F, P) with Ω being a sample space, F being a σ -
field, and P being the probability measure.

Remark 1. Similar to the deterministic case (see, e.g., Krstić
et al. (1995) and Praly and Jiang (1993)), the dynamics (1) is
said to be the inverse dynamics of the system (1)–(2), since the
input of the subsystem (1) is the output of the whole system
(1)–(2). When its input equals zero, the inverse dynamics is
said to be zero dynamics. When its zero dynamics is not
asymptotically stable in probability, the system composed of
(1)–(3) is said to be of non-minimum phase.
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The main results of this paper are based on the following
assumptions:

Assumption 1. H(0) = 0, and there are known smooth
nonnegative functions ϕi1(·), ϕi2(·), ψi1(·) and ψi2(·) with
ϕi1(0) = ϕi2(0) = ψi1(0) = ψi2(0) = 0, such that for
i = 0, 1, . . . , n,

| fi (xz, y)|4 ≤ ϕi1(|xz |)+ ϕi2(|y|),

‖gi (xz, y)‖4
≤ ψi1(|xz |)+ ψi2(|y|).

Assumption 2. There exists a smooth function Ξ (·) such that
for the dynamics

dxz = [F0(Ξ (xz + d1)+ d2)xz + H(Ξ (xz + d1)+ d2)

+ f0(xz,Ξ (xz + d1)+ d2)]dt

+ g0(xz,Ξ (xz + d1)+ d2)dw, (4)

there exist a function Vz(xz) ∈ C2 and αz1, αz2, α01, α02, α03 ∈

K∞ such that

αz1(|xz |) ≤ Vz(xz) ≤ αz2(|xz |), (5)

LVz ≤ −α01(|xz |)+ α02(|d1|)+ α03(|d2|). (6)

Assumption 3. There exist known smooth nonnegative func-
tions ψz and ψ0 with ψz(0) = ψ0(0) = 0, such that |

∂Vz
∂xz

| ≤

ψz(|xz |) and ‖g0(xz, y)‖ ≤ ψ0(|xz |).

Remark 2. According to Assumption 1, the nonlinear terms
of system (1)–(2) depend on both the measured output y
and the unmeasurable state xz . In this paper, by the concept
of stochastic input-to-state stabilizability (see Assumption 2),
the global stabilization via output feedback is solved for a
class of stochastic non-minimum-phase nonlinear systems. For
the deterministic systems, in Mazenc, Praly, and Dayawansa
(1994) counterexamples were given indicating that the global
stabilization of nonlinear systems in general low-triangular
form via output feedback is usually impossible without
introducing extra growth conditions on the unmeasurable states
of the system. For the stochastic nonlinear systems in which the
nonlinear terms depended on general unmeasurable states, see
our work Liu and Zhang (2008).

Remark 3. Assumption 2 is a stochastic input-to-state stabi-
lizability condition on the stochastic inverse dynamics. Indeed,
from (5) and (6), it follows that the dynamics (4) is stochastic
input-to-state stable (SISS) (see Definition A.2 in Appendix A)
with respect to the inputs d1 and d2 by Theorem A.2. In the case
of Ξ ≡ 0, the dynamics (1) is SISS with respect to y, and the
system is of minimum phase.

Remark 4. As a simple example, any system with the
following inverse dynamics is of non-minimum phase:

dx = (ax + y)dt + σ xdw, where a >
σ 2

2
. (7)

Indeed, its zero dynamics is dx = axdt +σ xdw. When a > σ 2

2 ,
the zero-dynamics is not asymptotically stable in probability

(Has’minskii, 1980). In other words, any system with (7) as the
inverse dynamics is of non-minimum phase. For such systems,
take Ξ = −(a + c +

σ 2

2 )(x + d1) with c > 1 being a constant.
Then, along the trajectory of dx = (ax + Ξ + d2)dt + σ xdw,
we have L(x2) ≤ −(2c − 2)x2

+ (a + c +
σ 2

2 )
2d2

1 + d2
2 . Thus,

Assumption 2 holds.

Remark 5. In Assumption 3, |
∂Vz
∂xz

| ≤ ψz(|xz |) is a general
assumption and easy to be satisfied. ‖g0(xz, y)‖ ≤ ψ0(|xz |) is a
constraint on the diffusion vector field of inverse dynamics (1),
which implies that the diffusion vector field of inverse dynamics
(1) is confined by the dynamics itself, and that the effect of the
subsystem (2) can be viewed as bounded. The zero dynamics
canonical form studied in Pan (2002) belongs to this class. And
moreover, for the deterministic cases, Assumption 3 is satisfied
trivially.

The control objective in this paper is to design a smooth
output-feedback control law of the form{
χ̇ = $(χ, y),
u = µ(χ, y)

(8)

such that the zero solution of the closed-loop system composed
of (1), (2) and (8) is globally asymptotically stable in
probability.

4. Reduced-order observer design

We first design a reduced-order observer for the unmeasur-
able states xz , x2, . . . , xn .

Define the error variables

x̃z = x̂z − xz + β0(y), x̃i = x̂i − xi + βi (y), i = 2, . . . , n,

x̃ = [x̃T
z , x̃2, . . . , x̃n]

T,

where βi (y), i = 0, 2, . . . , n, are C2 functions yet to be defined,
introduce the following observer

˙̂x z = F0(y)(x̂z + β0(y))+ H(y)

−
∂β0

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))], (9)

˙̂x i = x̂i+1 + βi+1(y)+ hT
i (y)(x̂z + β0(y))

−
∂βi

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))], (10)

i = 2, . . . , n,

with x̂n+1 = u, βn+1(y) ≡ 0, and let

A0(y) =


F0(y) 0 0 . . . 0
hT

2 (y) 0 1 . . . 0
...

...
. . .

hT
n−1(y) 0 0 . . . 1
hT

n (y) 0 0 . . . 0

 ,

β(y) =
[
βT

0 (y) β2(y) . . . βn(y)
]T
,

C0(y) =
[
hT

1 (y) 1 . . . 0
]
,
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A(y) = A0(y)−
∂β(y)

∂y
C0(y),

F(xz, y) =
[

f T
0 (xz, y) f2(xz, y) . . . fn(xz, y)

]T
,

G(xz, y) =
[
gT

0 (xz, y) gT
2 (xz, y) . . . gT

n (xz, y)
]T
,

F̃(xz, y) = −F(xz, y)+
∂β(y)

∂y
f1 +

1
2
∂2β(y)

∂y2 ‖g1‖
2, (11)

G̃(xz, y) =
∂β(y)

∂y
g1 − G(xz, y).

Then we obtain the observation error dynamics

dx̃ = A(y)x̃dt + F̃(xz, y)dt + G̃(xz, y)dw. (12)

Hence, the complete system can be expressed as

dxz = [F0(y)xz + H(y)+ f0(xz, y)]dt + g0(xz, y)dw,

dx̃ = A(y)x̃dt + F̃(xz, y)dt + G̃(xz, y)dw,

dy = (x2 + hT
1 (y)xz + f1(xz, y))dt + g1(xz, y)dw,

dx̂z =

(
F0(y)(x̂z + β0(y))+ H(y)

−
∂β0

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

)
dt,

dx̂i =

(
x̂i+1 + βi+1(y)+ hT

i (y)(x̂z + β0(y))

−
∂βi

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

)
dt,

i = 2, . . . , n.

(13)

Define the output error ỹ = y − Ξ with the function Ξ =

Ξ (x̂z +β0(y)) = Ξ (xz + x̃z) given by Assumption 2. Consider
the quartic function

Ve(x̃) =
δ1

2
(x̃T Px̃)2,

where P is a positive-definite constant matrix and δ1 > 0 is to
be determined. Then, by Itô formula, we have

LVe = δ1{x̃T Px̃[x̃T(A(y)T P + P A(y))x̃] + 2x̃T Px̃(F̃T Px̃)

+ Tr{G̃T(2Px̃ x̃T P + x̃T Px̃ P)G̃}}, (14)

and for any function r(y) > 0, by Young’s inequality,

2x̃T Px̃(F̃T Px̃) = 2x̃T Px̃

×

(
−FT Px̃ +

(
∂β

∂y
f1

)T

Px̃ +
1
2

(
∂2β

∂y2

)T

‖g1‖
2 Px̃

)

≤ x̃T Px̃

‖Px̃‖
2

r(y)
+ r(y)‖F‖

2
+

‖(
∂β
∂y )

T Px̃‖
2

r(y)

+ r(y)‖ f1‖
2
+

‖(
∂2β

∂y2 )
T Px̃‖

2

2r(y)
+

r(y)

2
‖g1‖

4


≤ x̃T Px̃

‖Px̃‖
2

r(y)
+

‖(
∂β
∂y )

T Px̃‖
2

r(y)
+

‖(
∂2β

∂y2 )
T Px̃‖

2

2r(y)



+
(x̃T Px̃)2

r(y)
+

r3(y)

4

[
‖F‖

2
+ ‖ f1‖

2
+

‖g1‖
4

2

]2

, (15)

Tr{G̃T(2Px̃ x̃T P + x̃T Px̃ P)G̃}

≤ 2‖G̃T Px̃‖
2
+ x̃T Px̃λmax(P)‖G̃‖

2

≤ 4

∥∥∥∥∥
(
∂β

∂y
g1

)T

Px̃

∥∥∥∥∥
2

+ 4‖G Px̃‖
2

+ x̃T Px̃λmax(P)

[
2

∥∥∥∥∂β∂y
g1

∥∥∥∥2

+ 2‖GT
‖

2

]

≤ 2
‖(
∂β
∂y )

T Px̃‖
4

r(y)
+ 2r(y)‖g1‖

4
+ 2

‖Px̃‖
4

r(y)
+ 2r(y)‖G‖

4

+

(x̃T Px̃λmax(P))2‖
∂β
∂y ‖

4

r(y)
+ r(y)‖g1‖

4

+
(x̃T Px̃λmax(P))2

r(y)
+ r(y)‖G‖

4

≤

2
‖(
∂β
∂y )

T Px̃‖
4

r(y)
+ 2

‖Px̃‖
4

r(y)
+

(x̃T Px̃λmax(P))2‖
∂β
∂y ‖

4

r(y)

+
(x̃T Px̃λmax(P))2

r(y)

+ r(y)[3‖g1‖
4
+ 3‖G‖

4
]. (16)

From Assumption 1, there exist smooth nonnegative functions
r1(·) and r2(·) which vanish at zero, such that

r3(y)

4

[
‖F‖

2
+ ‖ f1‖

2
+

‖g1‖
4

2

]2

+ r(y)[3‖g1‖
4
+ 3‖G‖

4
]

≤ r1(|y|)+ r2(|xz |). (17)

This together with y = ỹ + Ξ (xz + x̃z) implies that there exist
K∞ functions κe1(·), κe2(·) and κe3(·) such that

r3(y)

4

[
‖F‖

2
+ ‖ f1‖

2
+

‖g1‖
4

2

]2

+ r(y)[3‖g1‖
4
+ 3‖G‖

4
]

≤ κe1(|ỹ|)+ κe2(|xz |)+ κe3(|x̃z |). (18)

Thus, by (14)–(16) and (18), we have

LVe ≤ δ1 x̃T Px̃

x̃T(A(y)T P + P A(y))x̃

+
1

r(y)

‖Px̃‖
2
(

1 +
2‖Px̃‖

2

x̃T Px̃

)

+

∥∥∥∥∥
(
∂β

∂y

)T

Px̃

∥∥∥∥∥
2 (

1 +

2‖
∂β
∂y ‖

2
‖Px̃‖

2

x̃T Px̃

)

+
1
2

∥∥∥∥∥
(
∂2β

∂y2

)T

Px̃

∥∥∥∥∥
2

+ x̃T Px̃(λmax(P))
2
∥∥∥∥∂β∂y

∥∥∥∥4

+ x̃T Px̃(λmax(P))
2
+ x̃T Px̃

+ δ1κe1(|ỹ|)
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+ δ1κe2(|xz |)+ δ1κe3(|x̃z |). (19)

Let

Q(y) = P2
(

1 +
2λmax(P2)

λmin(P)

)
+ P(λmax(P))

2
+ P

+ P

(
∂β

∂y

)(
∂β

∂y

)T

P

(
1 +

2‖
∂β
∂y ‖

2λmax(P2)

λmin(P)

)

+ P

(
∂2β

∂y2

)(
∂2β

∂y2

)T

P + P(λmax(P))
2
∥∥∥∥∂β∂y

∥∥∥∥4

. (20)

If there exist functions β(y), r(y), a positive-definite matrix P ,
and K∞ functions κe0(·), κez(·) such that

x̃T Px̃

{
x̃T
[

A(y)T P + P A(y)+
Q(y)

r(y)

]
x̃

}
+ κe3(|x̃z |)

≤ −κe0(|x̃ |)− κez(|x̃z |), ∀y ∈ R,

then, from (19) and (20) one can get

LVe ≤ −δ1κe0(|x̃ |)− δ1κez(|x̃z |)+ δ1κe1(|ỹ|)

+ δ1κe2(|xz |). (21)

This inequality is the key to designing the stabilizing
controller and analyzing the stability of the closed-loop system.
Therefore, for convenience of citation, we give the following
assumption.

Assumption 4. There exist functions β(y), r(y), a positive-
definite matrix P , and K∞ functions κe0(·), κez(·) such that for
any y,

x̃T Px̃

{
x̃T
[

A(y)T P + P A(y)+
Q(y)

r(y)

]
x̃

}
+ κe3(|x̃z |)

≤ −κe0(|x̃ |)− κez(|x̃z |).

Remark 6. At first glance, Assumption 4 may appear
restrictive. In fact, it is somewhat related to the detectability
condition which has been used in the past literature of output-
feedback control. More precisely,

(i) Assumption 4 can be viewed as a robust detectability
condition on system (1)–(2). In the linear deterministic
case, it is a necessary and sufficient condition for
detectability when fi = gi = 0 (Karagiannis et al., 2005).

(ii) When nonlinear functions fi , gi , i = 0, . . . , n, are
bounded with respect to y (in the sense that there
exist smooth functions ϕi1(|xz |) and ψi1(|xz |) such that
| fi (xz, y)|4 ≤ ϕi1(|xz |), ‖gi (xz, y)‖4

≤ ψi1(|xz |), i =

0, . . . , n), β(y) can be selected to be linear. Thus, from
(20), Q(y) = Q is a constant positive-definite matrix. In
this case, r(y) = r can be chosen to be a constant and
sufficiently large such that Q

r ≤ I . Then, by (17) and (18)
we have κe3(x̃z) = 0. Thus, Assumption 4 is now reduced
to the following condition:

There exist a vector-valued function β(y), a positive-
definite matrix P , andK∞ functions κe0(·), κez(·) such that

x̃T Px̃[x̃T(A(y)T P + P A(y)+ I )x̃]

≤ −κe0(|x̃ |)− κez(|x̃z |), ∀y ∈ R.

This is nothing but a detectability condition of the systems
without disturbances.

(iii) For system (1)–(2), Assumption 4 is true if (a) for any
d > 0, there exist a function β(y) = Ly and a positive-
definite matrix P such that A(y)T P+P A(y) ≤ −(1+d)I ,
∀y ∈ R; and (b) for the Ξ (·) in Assumption 2, there exist
a constant σ > 0 and sufficiently small constants %1 > 0,
%2 > 0 such that

n∑
i=0

[ϕi1(|xz |)+ ψi1(|xz |)+ ϕi2(|Ξ (xz + x̃z)+ ỹ|)

+ψi2(|Ξ (xz + x̃z)+ ỹ|)]

≤ %1|x̃z |
4
+ %2|xz |

4
+ σ |ỹ|

4.

In fact, choose r(y) = r independent of %1 and sufficiently
large such that Q(y) = Q ≤ r I . Then, noticing that %1
is sufficiently small, from (18) we see that κe3(|x̃z |) =

κe3|x̃z |
4 with a sufficiently small κe3. Thus, Assumption 4

is true.
(iv) To design an asymptotically stabilizing control law

for deterministic non-minimum-phase systems, some
conditions on the observer design and small-gain
conditions seem necessary (Andrieu & Praly, 2005;
Karagiannis et al., 2003, 2005). For stochastic non-
minimum-phase nonlinear systems, such conditions are
first introduced here, and will be investigated in detail in
Section 7.

5. Control law design

We now use the backstepping method to design an output-
feedback control law with a to-be-determined gain function
such that the subsystem (13) is SISS with respect to xz and x̃ .

In the following, let β(y) be a known function obtained
according to Assumption 4.

Step 1. Set z1 = ỹ = y − Ξ (x̂z + β0(y)). Then, it follows from
(9) that

dz1 =

{
x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))

− (x̃2 + hT
1 (y)x̃z − f1)−

∂Ξ
∂(x̂z + β0(y))

[
F0(y)(x̂z

+ β0(y))+ H(y)−
∂β0

∂y
(x̃2 + hT

1 (y)x̃z − f1)

]
−

1
2
∂2Ξ
∂y2 ‖g1‖

2
}

dt +

(
g1 −

∂Ξ
∂y

g1

)
dw.

Define the virtual control as

φ1(y, x̂z) = λ1(y, x̂z)− β2(y)− ν(z2
1)z1 − hT

1 (y)(x̂z

+β0(y))+
∂Ξ

∂(x̂z + β0(y))
[F0(y)(x̂z + β0(y))

+ H(y)] (22)

with λ1(·, ·) being a smooth function to be designed later and
the gain function ν(·) ≥ 0 to be determined in the next section.
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Step i. Set zi = x̂i −φi−1(y, x̂z, x̂2, . . . , x̂i−1), i = 2, . . . n −1.
Then, by (9) and (10) we have

dzi =

{
x̂i+1 + βi+1(y)+ hT

i (y)(x̂z + β0(y))

−
∂βi

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

−
∂φi−1

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))

− (x̃2 + hT
1 (y)x̃z − f1)]

−
∂φi−1

∂ x̂z

[
F0(y)(x̂z + β0(y))+ H(y)

−
∂β0

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
+

i−1∑
j=2

∂φi−1

∂ x̂ j

[
x̂ j+1 + β j+1(y)+ hT

j (y)(x̂z + β0(y))

−
∂β j

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

]
−

1
2
∂2φi−1

∂y2 ‖g1‖
2
}

dt −
∂φi−1

∂y
g1dw.

Define the virtual control as

φi (y, x̂z, x̂2, . . . , x̂i )

= λi (y, x̂z, x̂2, . . . , x̂i )− βi+1(y)− hT
i (y)(x̂z + β0(y))

+
∂βi

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

+
∂φi−1

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

+
∂φi−1

∂ x̂z

[
F0(y)(x̂z + β0(y))+ H(y)

−
∂β0

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
+

i−1∑
j=2

∂φi−1

∂ x̂ j

[
x̂ j+1 + β j+1(y)+ hT

j (y)(x̂z + β0(y))

−
∂β j

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
(23)

with λi (·, . . . , ·) being a smooth function to be designed later.

Step n. Set zn = x̂n − φn−1(y, x̂z, x̂2, . . . , x̂n−1). Then, by (9)
and (10) we have

dzn =

{
u + hT

n (y)(x̂z + β0(y))

−
∂βn

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

−
∂φn−1

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))

− (x̃2 + hT
1 (y)x̃z − f1)]

−
∂φn−1

∂ x̂z

[
F0(y)(x̂z + β0(y))+ H(y)

−
∂β0

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
+

n−1∑
j=2

∂φn−1

∂ x̂ j

[
x̂ j+1 + β j+1(y)+ hT

j (y)(x̂z + β0(y))

−
∂β j

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
−

1
2
∂2φn−1

∂y2 ‖g1‖
2
}

dt −
∂φn−1

∂y
g1dw.

Design the control law as

u = λn(y, x̂z, x̂2, . . . , x̂n)− hT
n (y)(x̂z + β0(y))

+
∂βn

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

+
∂φn−1

∂y
[x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y))]

+
∂φn−1

∂ x̂z

[
F0(y)(x̂z + β0(y))+ H(y)

−
∂β0

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
+

n−1∑
j=2

∂φn−1

∂ x̂ j

[
x̂ j+1 + β j+1(y)+ hT

j (y)(x̂z + β0(y))

−
∂β j

∂y
(x̂2 + β2(y)+ hT

1 (y)(x̂z + β0(y)))

]
. (24)

Then, we obtain the following dynamics:

dz1 =

[
− ν(z2

1)z1 + λ1(y, x̂z)+ z2

+

(
∂Ξ
∂y

− 1
)
(x̃2 + hT

1 (y)x̃z − f1)

−
1
2
∂2Ξ
∂y2 ‖g1‖

2
]

dt +

(
g1 −

∂Ξ
∂y

g1

)
dw,

dzi =

[
λi (y, x̂z, x̂2, . . . , x̂i )+ zi+1

+
∂φi−1

∂y
(x̃2 − f1 + hT

1 (y)x̃z)

−
1
2
∂2φi−1

∂y2 ‖g1‖
2
]

dt −
∂φi−1

∂y
g1dw, (25)

dzn =

[
λn(y, x̂z, x̂2, . . . , x̂n)

+
∂φn−1

∂y
(x̃2 − f1 + hT

1 (y)x̃z)

−
1
2
∂2φn−1

∂y2 ‖g1‖
2
]

dt −
∂φn−1

∂y
g1dw.

Consider the following Lyapunov function candidate

V (z) =
1
4

n∑
i=1

z4
i , z = [z1, . . . , zn]

T.
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From (25), we obtain

LV = −ν(z2
1)z

4
1 +

n∑
i=1

λi z
3
i +

n−1∑
i=1

z3
i zi+1

+ z3
1

[(
∂Ξ
∂y

− 1
)
(x̃2 + hT

1 (y)x̃z − f1)−
1
2
∂2Ξ
∂y2 ‖g1‖

2
]

+
3
2

z2
1

∥∥∥∥g1 −
∂Ξ
∂y

g1

∥∥∥∥2

+

n∑
i=2

z3
i

[
∂φi−1

∂y
(x̃2 + hT

1 (y)x̃z − f1)

−
1
2
∂2φi−1

∂y2 ‖g1‖
2
]

+
3
2

n∑
i=2

z2
i

∥∥∥∥∂φi−1

∂y
g1

∥∥∥∥2

.

Noticing that Ξ depends on the disturbances xz and x̃ , we select
the functions λi (·, . . . , ·), i = 1, . . . , n, such that for a constant
c > 0 and a nonnegative function δ(·),

LV ≤ −cV − ν(ỹ2)ỹ4
+ δ(|(xz, x̃)|), (26)

where the nonnegative function ν(·) is to be designed in the next
section.

6. Stability analysis of the closed-loop system

In this section, we use the method of changing supply
functions to design the gain function ν(·) and analyze the
stability of the closed-loop system, which is made up of three
dynamics: inverse dynamics (1), error dynamics (12) and the
controlled dynamics (13). Firstly, we consider the cascade of
the inverse dynamics and error dynamics.

For y = ỹ + Ξ , the inverse dynamics (1) can be rewritten as

dxz =
[
F0(Ξ (xz + x̃z)+ ỹ)xz + H(Ξ (xz + x̃z)+ ỹ)

+ f0(xz,Ξ (xz + x̃z)+ ỹ)
]

dt

+ g0(xz,Ξ (xz + x̃z)+ ỹ)dw. (27)

Then, from Assumption 2 we have

LVz ≤ −α01(|xz |)+ α02(|x̃z |)+ α03(|ỹ|). (28)

Lemma 1. For the functions αz1(·), κe2(·), α01(·), ψz(·) and
ψ0(·) given by (5), (21) and (28) and Assumption 3, if

lim sup
s→0+

κe2(s)

α01(s)
< ∞, lim sup

s→0+

ψ2
z (s)ψ

2
0 (s)

α01(s)
< ∞, (29)

∫
∞

0
e
−
∫ u

0
1

ζ(α
−1
z1 (τ ))

dτ
[ξ(α−1

z1 (u))]
′du < ∞, (30)

where ξ(·) and ζ(·) are continuous increasing positive functions
satisfying

ξ(s) ≥
4δ1κe2(s)

α01(s)
, ζ(s) ≥

2ψ2
z (s)ψ

2
0 (s)

α01(s)
, ∀s > 0,

then there exists a nondecreasing positive function ρ1(·) ∈

C1
[0,∞) such that

ρ1(Vz(x))α01(|x |) ≥ 2ρ′

1(Vz(x))ψ
2
z (|x |)ψ2

0 (|x |)

+ 4δ1κe2(|x |), ∀x ∈ Rm . (31)

Proof. See Appendix B.

Remark 7. Different from that in the deterministic case due
to the appearance of the second-order differential term of
Itô formula, the condition (30) is needed. If the inverse
dynamics of the system degenerates to g0(xz, y) = 0, then
ψ0(|xz |) can be simply taken as 0. In this case, (31) becomes
ρ1(Vz(x))α01(|x |) ≥ 4δ1κe2(|x |), ∀x ∈ Rm . To get a ρ1
satisfying the above inequality, condition (30) is not needed
(see Liu et al., 2007).

Theorem 1. Suppose that Assumptions 1–4 and the conditions
of Lemma 1 hold. For δ1 > 0, ρ1(·) given by Lemma 1, if

δ1κez(s) ≥ ρ1(η1(s))α02(s), (32)

where η1(·) = αz2(α
−1
01 (4α02(·))), then the system composed of

(12) and (27) is SISS with respect to the output error ỹ.

Proof. Let

Vze(xz, x̃) =

∫ Vz(xz)

0
ρ1(t)dt + Ve(x̃). (33)

Then, by (21) and (28), Assumption 3 and Lemma 1 we have

LVze ≤ ρ1(Vz)LVz +
1
2
ρ′

1(Vz)‖∇V T
z g0‖

2
− δ1κe0(|x̃ |)

− δ1κez(|x̃z |)+ δ1κe1(|ỹ|)+ δ1κe2(|xz |)

≤ ρ1(Vz)[−α01(|xz |)+ α02(|x̃z |)+ α03(|ỹ|)]

+
1
2
ρ′

1(Vz)ψ
2
z (|xz |)ψ

2
0 (|xz |)− δ1κe0(|x̃ |)

− δ1κez(|x̃z |)+ δ1κe1(|ỹ|)+ δ1κe2(|xz |)

≤ ρ1(η1(|x̃z |))α02(|x̃z |)+ ρ1(η2(|ỹ|))α03(|ỹ|)

−
1
2
ρ1(Vz)α01(|xz |)+

1
2
ρ′

1(Vz)ψ
2
z (|xz |)ψ

2
0 (|xz |)

− δ1κe0(|x̃ |)− δ1κez(|x̃z |)+ δ1κe1(|ỹ|)

+ δ1κe2(|xz |)

≤ ρ1(η2(|ỹ|))α03(|ỹ|)−
1
4
ρ1(Vz)α01(|xz |)

− δ1κe0(|x̃ |)+ δ1κe1(|ỹ|), (34)

where η2(·) = αz2(α
−1
01 (4α03(·))) ∈ K∞. Let

αze(r) = inf
|(xz ,x̃)|≥r

{δ1κe0(|x̃ |)+
1
4
ρ1(0)α01(|xz |)},

γ1(r) = ρ1(η2(r))α03(r)+ δ1κe1(r).

Then, by (34) we have that

LVze ≤ −αze(|(xz, x̃)|)+ γ1(|ỹ|). (35)

Therefore, by Theorem A.2, the system composed of (12) and
(27) is SISS with respect to ỹ. �

Remark 8. It is worth noticing that the technical inequalities
in (29) are reminiscent of, but are different from, the (local)
small-gain conditions in the setting of deterministic controller
design (Isidori, 1999; Jiang & Praly, 1998). For both settings,
these conditions are required to hold only for small signals.
As to condition (30), it represents the main difference between
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the stochastic systems and deterministic ones. In the work Liu,
Zhang, and Jiang (2008), detailed analysis and some classes of
systems with this condition satisfied are given.

Remark 9. To obtain that the system composed of (12) and
(27) is SISS with respect to ỹ, in addition to the small-gain type
conditions (29) and (30), the condition (32) is needed, which is
a main constraint on the system (1)–(2) and different from that
on the systems with SISS inverse dynamics. Since it is hard to
illustrate the structure of the general nonlinear function Ξ (·),
the condition (32) is hard to verify. But for locally Lipschitz
and linear growth systems (e.g. globally Lipschitz systems),
the condition (32) can be verified, which will be given in the
next section. Besides, if κez(x̃z) ≤ a|x̃z |

4 for some constant
a > 0, ρ1 can be chosen as a constant (e.g. linear systems) and
α02(|x̃z |) ≤ ε|x̃z |

4 for some sufficiently small ε, then (32) is
true.

In the following, we will design the function ν(·) and state
the main results of the paper.

By the definition of Vze, there exist αze1, αze2 ∈ K∞ such
that

αze1(|(xz, x̃)|) ≤ Vze ≤ αze2(|(xz, x̃)|). (36)

By y = ỹ + Ξ (xz + x̃z), there exist smooth nonnegative
functions ψz1 and ψ01 such that ‖

∂Vze
∂(xz ,x̃)

‖ ≤ ψz1(|(xz, x̃)|) and
‖gze‖ ≤ ψ01(|(xz, x̃)|), where

gze =

[
g0(xz, y)
G̃(xz, y)

]
.

With these notations, we have the following lemma.

Lemma 2. For the functions αze1(·), δ(·), αze(·) given by (26),
(35) and (36), if

lim sup
s→0+

δ(s)

αze(s)
< ∞, lim sup

s→0+

ψ2
z1(s)ψ

2
01(s)

αze(s)
< ∞, (37)

∫
∞

0
e
−
∫ u

0
1

ζ1(α
−1
ze1(τ ))

dτ
[ξ1(α

−1
ze1(u))]

′du < ∞, (38)

where ξ1(·) and ζ1(·) are continuous increasing positive
functions satisfying

ξ1(s) ≥
4δ(s)
αze(s)

, ζ1(s) ≥
2ψ2

z1(s)ψ
2
01(s)

αze(s)
, ∀s > 0,

then there exists a nondecreasing positive function ρ2(·) ∈

C1
[0,∞) such that

ρ2(Vze(x))αze(|x |) ≥ 2ρ′

2(Vze(x))ψ
2
z1(|x |)ψ2

01(|x |)

+ 4δ(|x |), ∀x ∈ R2m+n−1. (39)

Proof. The proof is similar to that of Lemma 1, and so,
omitted. �

Theorem 2. Suppose that Assumptions 1–4 and the conditions
of Lemmas 1 and 2 hold. For γ1(·) given by (35), if

lim sup
s→0+

γ1(s)

s4 < ∞, (40)

then, under the control law (22)–(24), the closed-loop system
has an almost surely unique strong solution on [0,∞), and its
equilibrium is globally asymptotically stable in probability.

Proof. Let

W (xz, x̃, z) =

∫ Vze(xz ,x̃)

0
ρ2(t)dt + V (z), (41)

where ρ2(·) is given by Lemma 2. Then, by (26), (35) and
Lemma 2 we have

LW ≤ ρ2(Vze)LVze +
1
2
ρ′

2(Vze)‖∇V T
zegze‖

2
− cV

− ν(ỹ2)ỹ4
+ δ(|(xz, x̃)|)

≤ ρ2(Vze)[−αze(|(xz, x̃)|)+ γ1(|ỹ|)]

+
1
2
ρ′

2(Vze)ψ
2
z1(|(xz, x̃)|)ψ2

01(|(xz, x̃)|)

− cV − ν(ỹ2)ỹ4
+ δ(|(xz, x̃)|)

≤ ρ2(ηz1(|ỹ|))γ1(|ỹ|)−
1
2
ρ2(Vze)αze(|(xz, x̃)|)

+
1
2
ρ′

2(Vze)ψ
2
z1(|(xz, x̃)|)ψ2

01(|(xz, x̃)|)

− cV − ν(ỹ2)ỹ4
+ δ(|(xz, x̃)|)

≤ ρ2(ηz1(|ỹ|))γ1(|ỹ|)−
1
4
ρ2(Vze)αze(|(xz, x̃)|)

− cV − ν(ỹ2)ỹ4, (42)

where ηz1(·) = αze2(α
−1
ze (2γ1(·))) ∈ K∞.

From (40) we can construct a smooth function ν ∈ K∞ such
that

ν(s2) ≥ ρ2(ηz1(s)) sup
t∈(0,s]

γ1(t)

t4 ,

and hence,

ρ2(ηz1(|ỹ|))γ1(|ỹ|) ≤ ν(ỹ2)ỹ4.

This together with (42) gives

LW ≤ −
1
4
ρ2(0)αze(|(xz, x̃)|)− cV .

Thus, by Theorem A.1 the closed-loop system has an almost
surely unique strong solution on [0,∞) and the equilibrium
of the closed-loop system is globally asymptotically stable in
probability. �

7. On Assumption 4 and the small-gain type conditions

In this section, we will investigate what kind of systems of
the form (1)–(2) satisfy the main conditions of Theorems 1 and
2, that is, Assumption 4, and the small-gain type conditions
(29)–(30), (32) and (37)–(38). It is found that the following four
classes of often-encountered systems satisfy these conditions.

Class 1. Systems without inverse dynamics
In this case, xz does not exist. A(y) is reduced to a (n −1)×

(n − 1) Hurwitz matrix by properly selecting βi (y) = L i y, i =

2 . . . , n. Thus, Assumption 4 is satisfied. Since the nonlinear
terms are uncertain and with known upper bounds, this paper
can be viewed as a robust version of Deng and Krstić (1999).
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Class 2. Systems with SISS inverse dynamics
In this case, Assumption 2 holds for Ξ = 0, and the

condition (6) is reduced to

LVz ≤ −α01(|xz |)+ α03(|y|).

Thus, the condition (32) is satisfied for α02(|x̃z |) = 0. Select
a function β(y) to yield a constant Hurwitz matrix A. Then,
Assumption 4 is satisfied. Under small-gain type conditions
similar to (29)–(30) and (37)–(38), a stabilizing controller can
be constructively designed in a similar way as in the case N = 1
of Liu et al. (2007) without parametric uncertainties.

Class 3. Systems without disturbance
In this case, fi = gi = 0, i = 0, 1, . . . , n. This means

that the system is deterministic. Assumption 4 and conditions
(30), (32) and (38) can be relaxed as stated by the following
corollary:

Corollary 1 (Karagiannis et al., 2005). Consider system (1)
and (2) with fi = gi = 0, i = 0, 1, . . . , n, with Assumptions 1
and 2 satisfied. Suppose that there exist functions βi (y), i =

0, 2, . . . , n, and a positive-definitive matrix P such that

x̃T(A(y)T P + P A(y))x̃ ≤ −κe0(|x̃ |), ∀y ∈ R. (43)

Then, there exists a dynamic output-feedback control law of
the form (8) such that the closed-loop system is globally
asymptotically stable.

Class 4. Systems with locally Lipschitz and linear growth
conditions

Consider the system of the following form

dxz = [F0xz + H y + f0(xz, y)]dt + g0(xz, y)dw, (44)

dx1 = [x2 + hT
1 xz + f1(xz, y)]dt + g1(xz, y)dw,

... (45)

dxn−1 = [xn + hT
n−1xz + fn−1(xz, y)]dt + gn−1(xz, y)dw,

dxn = [u + hT
n xz + fn(xz, y)]dt + gn(xz, y)dw,

y = x1,

where fi , gi , i = 0, 1, . . . , n, are uncertain, vanish at zero and
satisfy the locally Lipschitz and linear growth conditions, that
is, for each k = 1, 2, . . . , there exists Lk > 0 such that

| fi (x1, y1)− fi (x2, y2)| ∨ ‖gi (x1, y1)− gi (x2, y2)‖

≤ Lk(|x1 − x2| + |y1 − y2|),

for (x1, x2, y1, y2) ∈ Rm
×Rm

×R×R with |x1|∨ |x2|∨ |y1|∨

|y2| ≤ k, and moreover, there exists a constant c > 0 such that

| fi (x, y)| ∨ ‖gi (x, y)‖ ≤ c(1 + |x | + |y|)

for all (x, y) ∈ Rm
× R. This implies that there are positive

constants ϕi j , ψi j , j = 1, 2, i = 0, 1, . . . , n, such that
Assumption 1 is satisfied with quartic functions ϕi j (s) = ϕi j s4,
ψi j (s) = ψi j s4. Suppose that Assumption 2 holds for a linear
function Ξ = −b(xz + x̃z) with b > 0. Then, (29)–(30) and
(37)–(38) are satisfied, and the functions ρ1(·), ρ2(·) in (31)
and (39) can be chosen as constants.

System (44)–(45) can be written in matrix form as

[
dη
dx1

]
=

A0

H
...

0
C0 0


[
η

x1

]
dt +


0
...

1
0

 udt

+ F1(xz, x1)dt + G1(xz, x1)dw,

y =
[
0 1

] [ η
x1

]
,

where η = [xT
z , x2, . . . , xn]

T, F1(xz, x1) = [ f T
0 , f2, . . . , fn,

f1]
T, G1(xz, x1) = [gT

0 , gT
2 , . . . , gT

n , gT
1 ]

T,

A0 =


F0 0 0 . . . 0
hT

2 0 1 . . . 0
...

...
. . .

hT
n−1 0 0 . . . 1
hT

n 0 0 . . . 0

 ,
C0 =

[
hT

1 1 0 . . . 0
]
.

Define the function β(y) = Ly with L being a constant vector.
Then, the matrix A in (12) is A0 − LC0. Let

Q = P2
(

1 +
2λmax(P2)

λmin(P)

)
+ P(λmax(P))

2
+ P

+ P L LT P

(
1 +

2‖L‖
2λmax(P2)

λmin(P)

)
+ P(λmax(P))

2
‖L‖

4

and choose constant r sufficiently large such that Q ≤ r I .
Then, Assumption 4 is reduced to the following condition:

There exist a vector L and two constants κe0, κez such that

x̃T Px̃{x̃T
[AT P + P A + I ]x̃} + κe3|x̃z |

4

≤ −κe0|x̃ |
4
− κez |x̃z |

4. (46)

If system (44)–(45) with F1 = G1 = 0 is detectable, then the
pair (A0,C0) is detectable, too. Hence, there exists a positive-
definite matrix P such that the matrix AT P + P A + I is
negative-definite. Since κe3 depends on r , Assumption 4 does
not hold naturally. We now discuss the following two cases:

Case (i). κe3 = 0.
When locally Lipschitz and linear growth functions fi ,

gi , i = 0, . . . , n, are bounded with respect to y, there are
positive constants ϕi1, ψi1 such that | fi (xz, y)|4 ≤ ϕi1|xz |

4,
‖gi (xz, y)‖4

≤ ψi1|xz |
4. In this case, we have κe3 = 0, and

hence, from (46) it follows that Assumption 4 is satisfied if
(A0,C0) is detectable.

Case (ii). κe3 6= 0.
It can be verified that the following functions satisfy (18):

κe1(|ỹ|) = κe1|ỹ|
4

= (8r3Φ2 + 8rΨ2)|ỹ|
4,

κe2(|xz |) = κe2|xz |
4

= [(8r3Φ2 + 8rΨ2)b
4
+ r3Φ1 + rΨ1]|xz |

4,

κe3(|x̃z |) = κe3|x̃z |
4

= (8r3Φ2 + 8rΨ2)b
4
|x̃z |

4,
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where for j = 1, 2,

Φ j =
n + 1

4

n∑
i=0

ϕi j , Ψ j = 3ψ1 j + 3n
n∑

i=0,i 6=1

ψi j .

In this case, if Φ2 and Ψ2 are sufficiently small, then the κe3
in (46) is sufficiently small. Hence, from (46) it follows that
Assumption 4 is satisfied if (A0,C0) is detectable.

Finally, for the error dynamics and inverse dynamics, we
have the following dissipative inequalities

LVe ≤ −δ1κe0|x̃ |
4
− δ1κez |x̃z |

4
+ δ1κe1|ỹ|

4
+ δ1κe2|xz |

4,

LVz ≤ −α01|xz |
4
+ α02|x̃z |

4
+ α03|ỹ|

4.

Choose ρ2 =
δ1κe2+q1
α01

. Then, the condition (32) is reduced to

δ1κezs4
≥
(δ1κe2 + q1)α02

α01
s4,

or equivalently, δ1(κezα01 − κe2α02) ≥ q1α02 for some δ1 > 0.
Let

B =

{
h ≥ 0 : |h| <

κezα01

α02

}
.

Then, for sufficiently small Φ j , Ψ j , j = 1, 2, we have κe2 ∈ B,
that is, the condition (32) is satisfied with a sufficiently large δ1.

In summary, for the non-minimum-phase stochastic system
(44)–(45) with the locally Lipschitz and linear growth
conditions, if its linear growth bounds ϕi j , ψi j , i = 0, 1, . . . , n,
j = 1, 2, are sufficiently small, then an output-feedback
controller can be designed to make the closed-loop system
globally asymptotically stable in probability.

8. A numerical example

In the following we give an example to illustrate the design
method of this paper.

Consider the following system

dxz = (xz + x1)dt +

√
2

20
xz sin x1dw,

dx1 = (x2 + xz)dt,

dx2 = (u + 2xz)dt +

√
2

20
xz

x2
1

1 + x2
1

dw,

y = x1.

(47)

When y = 0, the zero-dynamics dxz = xzdt is clearly
unstable. Thus, the system (47) is of non-minimum phase. But
the inverse dynamics is SISS stabilizable by smooth function
Ξ = −11(xz + d1) in the sense of Assumption 2. That is,

LVz = L
(

1
4

x4
z

)
≤ −

(
1 −

3
400

)
x4

z +
1
4

d4
2 + 2

3
4

d4
1 .

Consider a reduced-order observer in the form of (9) and (10):

˙̂x z = x̂z + β0(y)+ x1 −
∂β0

∂y
[x̂2 + β2(y)+ x̂z + β0(y)],

˙̂x2 = u + 2(x̂z + β0(y))−
∂β2

∂y
[x̂2 + β2(y)+ x̂z + β0(y)].

Choose β0(y) = 1.5y, β2(y) = 0.5y. Then we have

˙̂x z = −0.5x̂z − 1.5x̂2 − 0.5y,
˙̂x2 = u + 1.5x̂z − 0.5x̂2 + 2y.

In this case, we have

A(y) =

[
−0.5 −1.5
1.5 −0.5

]
,

and for any given constant d > 0,

P =

[
1 + d 0

0 1 + d

]
is a positive-definite matrix solution of A(y)T P + P A(y) =

−(1 + d)I .
Since fi = 0, g1 = 0, by (15), (16) and (19) we have

Q(y) = P2 2λmax(P2)

λmin(P)
+ Pλ2

max(P)

=

[
3(1 + d)3 0

0 3(1 + d)3

]
.

Let r(y) = λmax(Q(y)) = 3(1 + d)3. Then

LVe ≤ −δ1(1 + d)dx̃4
+ δ13r(y)

1

104 x4
z .

Let z1 = ỹ, z2 = x̂2 − φ1,V =
1
4 (z

4
1 + z4

2). Then, by (22) and
(24) we have

φ1(y, x̂z) = λ1(y, x̂z)− ν(z2
1)z1 − 12x̂z − 29.5y,

u = λ2(y, x̂z, x̂2)− 25x̂z − 11x̂2 − 55y.

Select

λ1(y, x̂z) = −27.25z1, λ2(y, x̂z, x̂2) = −44.75z2,

where ν(·) is a function to be specified. Then, (26) becomes

LV ≤ −0.25z4
1 − 0.25z4

2 − ν(z2
1)z

4
1 + 11.75x̃4

2 + 11.75x4
z .

As in (33), define

Vze = 1
3

397

(
δ13r(y)

1

104 + q1

)
Vz + Ve,

where q1 > 0. Then

LVze ≤ −q1x4
z +

100
397

(
δ13r(y)

1

104 + q1

)
ỹ4

+ 11
100
397

(
δ13r(y)

1

104 + q1

)
x̃4

z

− δ1
(1 + d)d

2
|x̃ |

4
− δ1

(1 + d)d

2
x̃4

z . (48)

Choose d = 1, q1 = 0.5, δ1 = 2. Then,

δ1
(1 + d)d

2
≥ 11

100
397

(
δ13r(y)

1

104 + q1

)
.

This together with (48) implies that

LVze ≤ −0.5x4
z − 2|x̃ |

4
+ 0.1296ỹ4.
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Fig. 1. States of the closed-loop system.

Let W = 6Vze + V as in (41), and take ν(z2
1) = 6×0.13. Then,

we have

LW ≤ −3x4
z + 6 × 0.13ỹ4

− 12|x̃ |
4
− 0.25z4

1 − 0.25z4
2

− 24 × 0.1296z4
1 + 11.75x̃4

2 + 11.75x̃4
z

≤ −3x4
z − 0.25|x̃ |

4
− 0.25z4

1 − 0.25z4
2.

Figs. 1 and 2 are the simulation results with initial values
xz(0) = −0.2, x1(0) = 0.01, x2(0) = −0.5, x̂z(0) =

0, x̂2(0) = 0. From Figs. 1 and 2, we can see that the
controller renders the resulting closed-loop system globally
asymptotically stable in probability.

9. Concluding remarks

In this paper, the problem of global output-feedback
stabilization has been studied for a class of stochastic nonlinear
systems with unstable zero dynamics. It has been shown

Fig. 2. Estimate of states and control of the closed-loop system.

that using the integrator backstepping method together with
the techniques of novel reduced-order observer design and
changing supply functions, it is possible to obtain a global
output-feedback stabilizing control law. It is the first attempt to
address the constructive design of output-feedback controllers
for stochastic non-minimum-phase nonlinear systems. By the
proposed control schemes, the output-feedback stabilization
problem was solved for some types of non-minimum-phase
systems, at least including locally Lipschitz and linear
growth (e.g. globally Lipschitz) stochastic non-minimum-phase
nonlinear systems and some nonlinear systems in special
output-feedback form.
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Appendix A. Stability of stochastic control systems

Consider the following stochastic nonlinear systems:

dx = f (x)dt + h(x)dw, x(0) = x0 ∈ Rn, (A.1)

where x ∈ Rn is the state; the Borel measurable functions
f : Rn

→ R and g : Rn
→ Rn×r are locally Lipschitz; w

is an r -dimensional standard Brownian motion.
The following stability notion introduced in Deng et al.

(2001) is used throughout this paper.

Definition A.1. For the system (A.1) with f (0) = 0, h(0) = 0,
the equilibrium x(t) = 0 is said to be globally asymptotically
stable in probability, if for any given ε > 0, there exists
γ (·) ∈ K such that

P{|x(t)| < γ (|x0|)} ≥ 1 − ε, ∀t ≥ 0, x0 ∈ Rn
\ {0},

and for any given initial condition x0,

P
{

lim
t→∞

x(t) = 0
}

= 1.

The following theorem gives sufficient conditions on the
stability introduced above.

Theorem A.1 (Deng et al., 2001). For the system (A.1) with
locally Lipschitz functions f (x) and h(x), if there exist a
positive-definite and radially unbounded function V (x) ∈ C2

and a positive-definite function W (x) such that LV ≤ −W (x),
then

(a) for (A.1) there exists an almost surely unique strong
solution on [0,∞) for each x0 ∈ Rn;

(b) the equilibrium x = 0 of the system (A.1) is globally
asymptotically stable in probability, when f (0) =

0, h(0) = 0.

To introduce the concept of SISS, we consider the following
system:

dx = f (x, v)dt + g(x, v)dw, (A.2)

where x ∈ Rn is the state, v = v(x, t) : Rn
× R+ → Rm

is the input, w is an r -dimensional standard Brownian motion
defined on the complete probability space (Ω ,F, {Ft }t≥0, P),
with Ω being a sample space, F being a σ -field, {Ft }t≥0 being
a filtration, and P being a probability measure; f : Rn

×Rm
→

Rn and g : Rn
× Rm

→ Rn×r are assumed to be locally
Lipschitz in their arguments. Assume that for every initial
condition x0, each essentially bounded measurable input v, the
system (A.2) has an almost surely unique strong solution1 x(t)
on [0,∞) which is Ft -adapted, t-continuous, and measurable
with respect to B × F , where B denotes the Borel σ -algebra

1 For notational simplicity, this solution process x(ω, t)(ω ∈ Ω) is often
abbreviated as x(t).

of R (see Has’minskii, 1980). Then we have the following
definition.

Definition A.2 (Liu et al., 2008). The system (A.2) is SISS if
for any given ε > 0, there exist a KL function β(·, ·) and a K
function γ (·) such that

P{|x(t)| < β(|x0|, t)+ γ ( sup
0≤s≤t

‖vs‖)} ≥ 1 − ε,

∀t ≥ 0, ∀x0 ∈ Rn
\ {0},

where ‖vs‖ = infA⊂Ω ,P(A)=0 sup{|v(x(ω, s), s)| : ω ∈ Ω\A}.

The following theorem provides a sufficient condition for
SISS.

Theorem A.2 (Liu et al., 2008). The system (A.2) is SISS if
there exist a C2 function V (x) and K∞ functions α1, α2, α, χ

such that

α1(|x |) ≤ V (x) ≤ α2(|x |), LV ≤ χ(|v|)− α(|x |).

Appendix B. Proof of Lemma 1

Proof. Let

q1(s) =
1

ζ(α−1
z1 (s))

, q2(s) =
ξ(α−1

z1 (s))

ζ(α−1
z1 (s))

,

and

ρ1(s) = e
∫ s

0 q1(τ )dτ
[
ρ1(0)−

∫ s

0
q2(u)e

−
∫ u

0 q1(τ )dτdu

]
with ρ1(0) being an arbitrary positive number satisfying

ρ1(0) ≥ ξ(0)+

∫
∞

0
[ξ(α−1

z1 (s))]
′e−

∫ s
0 q1(τ )dτds.

Then, it is easy to see that

ρ1(s) = ρ′

1(s)ζ(α
−1
z1 (s))+ ξ(α−1

z1 (s)), s ≥ 0. (B.1)

Noticing that∫ s

0
q2(u)e

−
∫ u

0 q1(τ )dτdu +
q2(s)

q1(s)
e−

∫ s
0 q1(τ )dτ

= −

∫ s

0

q2(u)

q1(u)
de−

∫ u
0 q1(τ )dτ +

q2(s)

q1(s)
e−

∫ s
0 q1(τ )dτ

= −
q2(u)

q1(u)
e−

∫ u
0 q1(τ )dτ |

s
0 +

∫ s

0

[
q2(u)

q1(u)

]′

e−
∫ u

0 q1(τ )dτdu

+
q2(s)

q1(s)
e−

∫ s
0 q1(τ )dτ

= ξ(0)+

∫ s

0
[ξ(α−1

z1 (u))]
′e−

∫ u
0 q1(τ )dτdu

≤ ρ1(0), ∀s ≥ 0,

we have
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ρ′

1(s) = e
∫ s

0 q1(τ )dτ
[
ρ1(0)−

∫ s

0
q2(u)e

−
∫ u

0 q1(τ )dτdu

−
q2(s)

q1(s)
e−

∫ s
0 q1(τ )dτ

]
≥ 0, ∀s ≥ 0.

This together with (B.1) leads to

ρ1(Vz(x)) = ρ′

1(Vz(x))ζ(α
−1
z1 (Vz(x)))+ ξ(α−1

z1 (Vz(x)))

≥ ρ′

1(Vz(x))ζ(|x |)+ ξ(|x |)

≥ ρ′

1(Vz(x))
2ψ2

z (|x |)ψ2
0 (|x |)

α01(|x |)
+

4δ1κe2(|x |)

α01(|x |)
.

Multiplying both sides of the above inequality by α01(|x |) gives
(31).
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Arslan, G., & Başar, T. (2002). Risk-sensitive adaptive trackers for strict-
feedback systems with output measurements. IEEE Transactions on
Automatic Control, 47(10), 1754–1758.

Battilotti, S. (1997). A note on reduced order stabilizing output feedback
controllers. Systems and Control Letters, 30(2), 71–81.
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adaptive control design. New York: Wiley.

Liu, S. J., & Zhang, J. F. (2008). Output-feedback control of a class of stochastic
nonlinear systems with linearly bounded unmeasurable states. International
Journal of Robust and Nonlinear Control, 18(6), 665–687.

Liu, S. J., Zhang, J. F., & Jiang, Z. P. (2007). Decentralized adaptive
output-feedback stabilization for large-scale stochastic nonlinear systems.
Automatica, 43(2), 238–251.

Liu, S. J., Zhang, J. F., & Jiang, Z. P. (2008). A notion of stochastic input-to-
state stability and its application to stability of cascaded stochastic nonlinear
systems. Acta Mathematicae Applicatae Sinica (English Series), 24(1),
141–156.

Liu, Y. G., Pan, Z. G., & Shi, S. J. (2003). Output feedback control design
for strict-feedback stochastic nonlinear systems under a risk-sensitive cost.
IEEE Transactions on Automatic Control, 48(3), 509–513.

Liu, Y. G., Zhang, J. F., & Pan, Z. G. (2003). Design of satisfaction output
feedback controls for stochastic nonlinear systems under quadratic tracking
risk-sensitive index. Science in China (Series F), 46, 126–145.

Liu, Y. G., & Zhang, J. F. (2006). Practical output-feedback risk-sensitive
control for stochastic nonlinear systems with stable zero-dynamics. SIAM
Journal on Control and Optimization, 45(3), 885–926.

Mazenc, F., Praly, L., & Dayawansa, W. D. (1994). Global stabilization by
output feedback: Examples and counterexamples. Systems and Control
Letters, 23(2), 119–125.

Marino, R., & Tomei, P. (1991). Dynamic output feedback linearization and
global stabilization. Systems and Control Letters, 17(2), 115–121.

Marino, R., & Tomei, P. (2005). A class of globally output feedback stabilizable
nonlinear nonminimum phase systems. IEEE Transactions on Automatic
Control, 50(12), 2097–2101.

Pan, Z. G. (2002). Canonical forms for stochastic nonlinear systems.
Automatica, 38(7), 1163–1170.
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